X-37B lançado por um foguetão Falcon-9

Uma nova missão militar do veículo X-37B foi lançada às 1400UTC por um foguetão Falcon-9 desde o Centro Espacial Kennedy em mais um lançamento bem sucedido da SpaceX a partir do Complexo de Lançameno LC-39A. Mais uma vez a SpaceX conseguiu recuperar o primeiro estágio de um Falcon-9 com uma aterragem na LZ-1 (LC-13) do Cabo Canaveral AFS.

A bordo foram também lançados vários pequenos satélites, mas não se sabe se estes se irão separar do segundo estágio do Falcon-9 ou se serão colocados em órbita a partir do X-37B.

Esta será possivelmente a terceira missão orbital do veículo X-37B-1 depois de ter sido lançado a 22 de Abril de 2010 e a 11 de Dezembro de 2012.

Segundo a Força Aérea dos Estados Unidos, o X-37B é um programa de teste experimental destinado a demonstrar as tecnologias para o desenvolvimento de uma plataforma de teste espacial fiável, reutilizável e não tripulada. Os principais objectivos do programa são a demonstração de tecnologias reutilizáveis para o futuro programa espacial dos Estados Unidos e a realização de experiências que podem ser recuperadas e examinadas na Terra.

Baseado num desenho da NASA, o X-37B é o mais recente e mais avançado veículo espacial capaz de regressar da órbita terrestre. O veículo é desenhado para ser lançado na vertical para uma órbita terrestre baixa onde pode levar a cabo experimentação e teste espacial de longa duração. Após receber comandos enviados do solo, o OTV reentra na atmosfera terrestre de forma autónoma, descendo e aterrando de forma horizontal numa pista de aterragem. Assim, o X-37B é o primeiro veículo desde o vaivém espacial da NASA com a capacidade de trazer de volta para a Terra para posterior inspecção e análise, mas tendo um tempo de vida em órbita de até 270 dias, o X-37B pode permanecer no espaço por muito mais tempo.

As tecnologias que estão a ser testadas neste programa incluem sistemas avançados de orientação, navegação e controlo, bem como sistemas de protecção térmica, aviónicos, selos e estruturas capazes de resistir a altas temperaturas, sistemas isoladores reutilizáveis, sistemas de voo electromecânicos ultra-leves, e o voo orbital, reentrada e aterragem autónomos.

X-37B-robotic
O Air Force Rapid Capabilities Office lidera o programa do OTV para o Departamento de Defesa dos Estados Unidos, estando na direcção do Subsecretário da Defesa para a Aquisição, Tecnologia e Logística do Secretário da Força Aérea. O esforço do OTV utiliza vastos investimentos de empresas e do governo no programa X-37 por parte da Força Aérea dos Estados Unidos, da NASA e da agência DARPA (Defense Advanced Research Projects Agency) para continuar o desenvolvimento deste veículo.

O programa original do X-37 da NASA teve início em 1999 e prolongou-se até Setembro de 2004 quando a NASA transferiu o programa para a DARPA. A NASA tinha como objectivo a construção de dois veículos, um veículo ALTV (Approach and Landing Test Vehicle), para testar os sistemas na aterragem e o seu comportamento em voo atmosférico, e um veículo orbital OV. O ALTV validou a dinâmica de voo e prolongou o voo para lá dos testes a baixa velocidade e altitude conduzidos pela NASA entre 1998 e 2001 com o X-40A, uma versão de menor escala do X-37 desenvolvido pelo Air Force Research Labs. A DARPA finalizou a porção do programa do X-37 em Setembro de 2006 ao executar com sucesso uma série de voos rebocados e livres. O X-37 OV da NASA nunca foi construído, mas o seu desenho serviu como ponto de partida para o programa do X-37B.

X-37B_430

O primeiro X-37B, OTV-1, foi lançado desde o cabo Canaveral AFB a 22 de Abril de 2010 e levou a cabo com sucesso uma aterragem autónoma na Base Aérea de Vandenberg a 3 de Dezembro de 2010, após permanecer 224 dias, 8 horas e 24 minutos em órbita. A missão OTV-2 teve início a 5 de Março de 2011 e permaneceu em órbita durante 469 dias, mais do que duplicando a duração da primeira missão. A missão OTV-3 foi lançada a 11 de Dezembro de 2012 e teve uma duração de 675 dias.

O X-37B foi construído pela Boeing e tem um comprimento de 8,9 metros, 2,9 metros de altura e uma envergadura de 4,5 metros. No lançamento tem um peso de 4.990 kg. A sua energia é fornecida por painéis solares compostos por células de gálio e arsénio, e por baterias de lítio.

X-37B ORBITAL TEST VEHICLE-3 LANDS AT VANDENBERG AFB

X-37B ORBITAL TEST VEHICLE-3 LANDS AT VANDENBERG AFB

Lançamento

O foguetão Falcon-9 é activado a T-10h 00m. Tanto o lançador como a sua carga são submetidos a uma série de verificações testes antes do início do abastecimento do querosene RP-1. O Director de Voo consulta os controladores a T-1h 8m, determinando assim se tudo está pronto para o lançamento. O processo de abastecimento inicia-se a T-1h 00m, seguindo-se o início do abastecimento do oxigénio líquido (LOX) a T-35m.

A fase terminal da contagem decrescente inicia-se a T-13m e a T-10m iniciava-se a contagem decrescente final com os motores a serem condicionados termicamente para o lançamento a T-7m. A T-2m o Director de Lançamento da SpaceX verifica se todos os parâmetros estão prontos para o lançamento. Na mesma altura, é verificado que o espaço aéreo está pronto para o voo. A T-1m é enviado um comando para o computador de voo para iniciar as verificações pré-lançamento e o sistema de supressão sónica por água é activado na plataforma de lançamento. Os tanques de propolente são pressurizados a T-1m e a sequência de ignição é iniciada a T-3s. A T=0s o foguetão abandona a plataforma.

Abandonando a plataforma de lançamento, o Falcon-9 inicia uma série de manobras para se colocar na trajectória de voo correcta. A fase MaxQ, de máxima pressão dinâmica, é atingida a T+1m 19s. O final da queima do primeiro estágio ocorre a T+2m 23s, dando-se três segundos depois a separação entre o primeiro e o segundo estágio. O segundo estágio entra em ignição a T+2m 34s. A ejecção da carenagem de protecção deverá ocorrea a T+2m 53s. O final da queima do segundo estágio deverá ocorrer a T+9m 17s. Não é claro se o segundo estágio levará a cabo uma nova ignição antes da separação do X-37B. 

Após a separação entre o primeiro e o segundo estágio, o primeiro estágio inicia o seu regresso controlado à Terra. Este regresso é levado a cabo com a queima do motor central do primeiro estágio a T+2m 39s que vai diminuindo o seu movimento em relação ao local de lançamento e a sua velocidade à medida que reentra na atmosfera terrestre. À medida que se aproxima da plataforma flutuante onde iria aterrar, uma nova queima abranda o veículo, levando-o a uma aterragem suave. A queima de reentrada do primeiro estágio ocorre a T+6m 34s, com a aterragem a ter lugar a T+8m 14s

A SpaceX possui duas plataformas flutuantes baptizadas de Just Read the InstructionsOf Course I Still Love You, que são os nomes de embarcações das histórias do autor Iain M. Banks. A plataforma utilizada nesta aterragem foi a segunda Just Read the Instructions – com a primeira de seu nome a ser convertida numa barcaça regular após ser utilizada nas tentativas de aterragem das missões CRS-5 e CRS-6 lançadas desde Cabo Canaveral AFS.

Desta vez o primeiro estágio irá aterrar na LZ-1 do Cabo Canaveral.

O Falcon-9

Baptizado em nome da nave Millenium Falcon da saga cinematográfica “Guerra das Estrelas”, o foguetãfalcon9o Falcon-9 v1.1 era um lançador a dois estágios projectado e fabricado pela SpaceX para o transporte seguro e fiável de satélites e do veículo Dragon para a órbita terrestre. Sendo o primeiro foguetão completamente desenvolvido no Século XXI, o Falcon-9 foi projectado desde o início para ter a máxima fiabilidade. A sua simples configuração de dois estágios minimiza o número de eventos de separação (staging) e com nove motores no primeiro estágio, pode completar a sua missão em segurança mesmo na possibilidade de perda de um motor.

O Falcon-9 fez história em 2012 quando colocou a cápsula Dragon na órbita correcta para uma manobra de encontro com a estação espacial internacional, fazendo da SpaceX a primeira companhia comercial a visitar a ISS. Desde então, a SpaceX realizou um total de três missões para a ISS transportando e recolhendo carga para a NASA. O Falcon-9, bem como a cápsula Dragon, foram desenhados na base do desenvolvimento de um sistema de transporte de astronautas para o espaço e num acordo com a NASA, a SpaceX está activamente a trabalhar para atingir esse objectivo.

O foguetão Falcon-9 Upgrade (a seguir designado simplesmente como ‘Falcon-9’) representa a mais recente evolução deste lançador. De forma geral o Falcon-9 tem 68,4 metros de comprimento, 3,7 metros de diâmetro e uma massa de 541.300 kg. O veículo é capaz de colocar uma carga de 13.150 kg numa órbita terrestre baixa ou 4.850 kg numa órbita de transferência geossíncrona.

O primeiro estágio do Falcon-9 está equipado com nove motores Merlin (Merlin-1D) e tanque de liga de alumínio e lítio que contêm oxigénio líquido e querosene RP-1. Após a ignição, um sistema de segurança fixa o veículo na plataforma de lançamento e garante que todos os motores são verificados como estando na força máxima antes de libertar o foguetão para o seu voo. Então, com uma força superior a cinco aviões Boeing 747 em potência máxima, os motores Merlin lançam o foguetão para o espaço. Ao contrário dos aviões, a força de um foguetão vai aumentando com a altitude – o Falcon-9 gera 6.806 kN ao nível do mar mas atinge 7.426 kN no vácuo espacial. Os motores do primeiro estágio vão sendo aumentados em potência perto do final da queima do estágio para assim limitar a aceleração do veículo à medida que a massa do lançador vai diminuindo com a queima do combustível. O tempo total de queima do primeiro estágio é de 162 segundos.

Com os seus nove motores agrupados juntos na configuração ‘octaweb’, o Falcon-9 pode aguentar a falha de até dois motores durante o lançamento e mesmo assim conseguir atingir a órbita terrestre com sucesso. O Falcon-9 é o único lançador na sua classe com esta característica chave.

O motor Merlin foi desenvolvido internamente pela SpaceX mas vai encontrar as suas raízes aos motores das missões Apollo, nomeadamente o sistema de injecção baseado no motor do módulo lunar. O propolente é alimentado através de uma única conduta, com uma turbo-bomba de dupla pá que opera num ciclo de gerador a gás. A turbo-bomba também fornece o querosene a alta pressão para os actuadores hidráulicos, que depois recicla para a entrada a baixa pressão. Isto elimina a necessidade de um sistema hidráulico separado e significa que não é possível ocorrer uma falha no controlo de vector de força por falta de fluido hidráulico. Uma terceira utilização da turbo-bomba é o fornecimento de controlo de rotação ao actuar no escape da turbina de exaustão (no segundo estágio). Combinando-se estas características num só dispositivo aumenta-se assim de forma significativa o nível de fiabilidade do sistema.

O motor é capaz de desenvolver uma força de 654 kN ao nível do mar, 716 kN no vácuo, com um impulso específico de 282 segundos (nível do mar) e 311 segundos (vácuo).

A secção interestágio é uma estrutura compósita que liga o primeiro e o segundo estágio e alberga os sistemas de libertação e separação. O Falcon-9 utiliza um sistema de separação totalmente pneumático para uma separação de baixo impacto e altamente fiável que pode ser testado no solo, ao contrário dos sistemas pirotécnicos utilizados na maior parte dos lançadores.

O segundo estágio é propulsionado por um único motor Merlin de vácuo e coloca a carga a transportar na órbita desejada. O motor do segundo estágio entra em ignição poucos segundos após a separação entre o segundo e o primeiro estágio, e pode ser reiniciado várias vezes para colocar múltiplas cargas em diferentes órbitas. Para máxima fiabilidade, o segundo estágio está equipado com sistemas de ignição redundantes. Tal como o primeiro estágio, o segundo estágio é feito a partir de uma liga de alumínio e lítio.

O motor Merlin de vácuo (Merlin-1D de vácuo) desenvolve uma força de 934 kN e o seu tempo de queima é de 397 segundos.

SES-9Falcon 6

SES-9Falcon 7

A carenagem compósita é utilizada para proteger a carga durante a passagem do Falcon-9 pelas camadas mais densas da atmosfera. Quando a missão do Falcon-9 é o lançamento do veículo de carga Dragon, a carenagem não é utilizada pois a cápsula possui o seu próprio sistema de protecção.

A carenagem tem 13,1 metros de comprimento e 5,2 metros de diâmetro. Fabricada em fibra de carbono, separa-se em duas metades utilizando um sistema de separação de actuadores pneumáticos semelhantes aos que são utilizados para a separação entre o primeiro e o segundo estágio.

A sequência de lançamento para o Falcon-9 é um processo de precisão ditada pela janela de lançamento de cerca de uma hora tendo em conta a posição orbital a ser ocupada pelo satélite. Se a janela de lançamento de uma hora é perdida, a missão é então adiada para o dia seguinte.

Cerca de quatro horas antes do lançamento, inicia-se o processo de abastecimento – primeiro oxigénio líquido seguindo-se o querosene altamente refinado (RP-1). O vapor que se observa a sair do lançador durante a contagem decrescente é na realidade oxigénio a ser libertado dos tanques, sendo esta a razão pela qual o abastecimento de oxigénio líquido se mantém até quase ao final da contagem decrescente.

SpaceX barge

Recuperação do primeiro estágio

Denominada como Autonomous Spaceport Drone Ship (ASDS), a plataforma tem um ‘X’ pintado no seu centro marcando de forma literal o local onde o primeiro estágio deverá desce. 

A ASDS é muito mais do que uma plataforma flutuante, estando equipada com motores aproveitados a partir de plataforma petrolíferas e que permitem que a plataforma mantenha a sua posição com uma precisão de três metros, mesmo em mares alterados. No futuro a ASDS terá a capacidade de reabastecer estágios recuperados e permitindo assim que estes façam a viagem de regresso a Cabo Canaveral.

Este sistema inovador será também extremamente importante para o Falcon Heavy em meados de 2016.

Durante a sua descida para a Terra, o primeiro estágio realiza três queimas para reduzir a sua velocidade e manter-se na trajectória em direcção à ASDS. A primeira queima terá uma duração de 27,68 segundos, tendo inicio a T+4m 29s após o lançamento. Esta queima tem como função reduzir a distância que o primeiro estágio percorre em relação à plataforma flutuante. A T+6m 32s dá-se a abertura dos estabilizadores, iniciando-se a segunda queima 12,17 segundos mais tarde para reduzir a velocidade do veículo na reentrada. A terceira e última queima ocorre à medida que o estágio se aproxima do seu local de aterragem, iniciando-se a T+8m 0s. Cerca de 24 segundos mais tarde, as quatro pernas de descida serão colocadas em posição e a aterragem é esperada seis segundos mais tarde, a T+8m 30s após o lançamento.

Dragon CRS-6 $ 2

Dados Estatísticos e próximos lançamentos

– Lançamento orbital: 5653

– Lançamento orbital SpaceX: 46

– Lançamento orbital desde CE Kennedy: 163

Dos lançamentos bem sucedidos levados a cabo em 2017: 11,8% foram realizados pelos Estados Unidos (incluindo ULA – 83,3% (5) e Orbital ATK – 16,7% (1)); 13,7% (7) pela China; 17,6% (9) pela Rússia; 15,7% (8) pela Arianespace; 7,8% (4) pela Índia; 7,8% (4) pelo Japão e 25,5% (13) pela SpaceX.

Os próximos lançamentos orbitais previstos são (hora UTC):

11 Set (1923:41) – 8K82KM Proton-M/Briz-M – Baikonur, LC200 PU-39 – Amazonas-5

12 Set (2117:02) – 11A511U-FG Soyuz-FG – Baikonur, LC1 PU-5 – Soyuz MS-06

14 Set (????:??) – Atlas-V/541 (AV-072) – Vandenberg AFB, SLC-3E – NROL-42 (Trumpet Follow On 2)

22 Set (????:??) – 14A14-1B Soyuz-2-1B/Fregat-M – GIK-1 Plesetsk, LC43/4 – Glonass n.º 52

28 Set (1000:00) – Atlas-V/421 (AV-075) – Cabo Canaveral AFS, SLC-41 – NROL-52 (Quasar 21 (SDS-4 2))